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Review
Glossary

AFLP: amplified fragment length polymorphism.

Linkage disequilibrium (LD): the non-random association of alleles between

two loci or between a marker and a QTL within a population. Non-zero

measures of LD indicate that the association is not random.

Linkage drag: during the introgression of desirable traits through crossing of

two strains or varieties, genes other than that responsible for the selected trait

may also be introduced due to tight linkage with the gene of interest. The

introduction of these ‘hitchhiker’ genes may bring with them additional

phenotypes, not always desirable.

Linkage group (LG): all genes situated on a single chromosome belong to a

single LG. It is possible that a chromosome can appear as more than one LG

when information about that chromosome is incomplete.

Quantitative trait loci (QTL): the identification of the causal genetic variation

that underscores phenotypic characteristics often involves the mapping of

QTLs. This process relies on crossing strains with contrasting phenotypes (e.g.,

a high and low producer) and analyzing the progeny to identify genetic

markers that cosegregate with phenotypes of interest. This identifies genomic

region(s) contributing to the trait while providing genetic markers that can be

used to efficiently screen progeny.
Wine is arguably the oldest biotechnological endeavor,
with humans having been involved in wine production
for at least 7000 years. Despite the artisan nature of its
production, work by pioneering scientists such as
Antoine-Laurent de Lavoisier and Louis Pasteur placed
wine research in a prominent position for the applica-
tion of cutting-edge biological and chemical sciences, a
position it still holds to this day. Technologies such as
whole-genome sequencing and systems biology are
now revolutionizing winemaking by combining the abil-
ity to engineer phenotypes rationally, with a precise
understanding of the genetic makeup and key pheno-
typic drivers of the key organisms that contribute to this
age-old industry.

The interwoven histories of human civilization,
winemaking, and science
Wine has been an integral part of human civilization for
thousands of years, with the first signs of large-scale wine-
making activities dating to at least 5000 BC [1] (Figure 1).
Over the subsequent millennia, chance mating, traditional
breeding, and selection strategies were applied to the wild
precursors of modern grapevines to provide us with the
array of Vitis vinifera cultivars that are used in wine
production today [2]. However, it was not until the 19th
and 20th centuries that the microorganisms that were
responsible for the conversion of grape must into wine
began to be formally classified (Figure 1). The yeast Sac-
charomyces cerevisiae was ultimately identified as the
principal microorganism responsible for wine production,
and the bacterium Oenococcus oeni was shown to be re-
sponsible for malolactic fermentation, a secondary fermen-
tation that takes place in many wines (Figure 2) [3,4].

Ever since the historical work of Antoine-Laurent de
Lavoisier defined the chemical reactions that underpin the
fermentation of sugars into ethanol and carbon dioxide,
and Louis Pasteur determined the biological basis of this
reaction, wine has figured prominently as an applied plat-
form for cutting-edge fundamental research. This rapid
adoption of technology, although providing many benefits
to the wine industry, including the use of sulfur as a
preservative, grafted grapevines, analytical wine chemis-
try, and starter yeast and bacterial cultures, has also often
created a divide between so called ‘traditional’ or ‘Old
World’ winemakers and those of the ‘New World’ that seek
to use technology to control the winemaking process. No
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issue has been more polarizing than the use of genetic
modification (GM) of grapevines and wine yeast. Despite
the power of this technology to significantly alter the
characteristics of both the grapevine and wine microorgan-
isms [5,6], GM technology remains all but unused due to
bans on its application in wine throughout most major
wine-producing countries.

Although the use of organisms produced by GM techni-
ques in the food industry have been condemned by many,
all but the most verdant supporters of ‘traditional’ wine-
making practices support the application of classical agri-
cultural improvement strategies, such as mutagenesis and
breeding combined with phenotypic selection, to produce
new grapevine clones or microbial strains. The develop-
ment of modern molecular biology techniques, such as
high-throughput genomics and systems biology, are now
poised to revolutionize the winemaking process. Recent
developments in modern molecular biology, such as high-
throughput genomics and systems biology, are poised to
revolutionize winemaking. By providing the means to
rapidly characterize the scope of genetic diversity available
to breeders and biotechnologists alike, these technologies
provide the capability to fast-track identification of a phe-
notypic trait’s genetic basis. Precisely defining the genetic
sources of specific phenotypes will facilitate the systematic
assembly of multiple desirable traits into grapevine and
wine microorganisms. Improved genetic definition will
increase precision and lead to efficiency gains in traditional
development programs. Such opportunities may also
RAPD: random amplification of polymorphic DNA.

SSR: simple sequence repeat.
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Figure 1. A timeline of significant events as winemaking transitioned through the

ages of mystery to discovery and finally technology.

Review Trends in Genetics April 2013, Vol. 29, No. 4
provide an area of compromise between traditionalists and
technologists in the winemaking world.

Characterization of genetic diversity
There is a wide array of phenotypic variation present
across different cultivars of V. vinifera and different strains
Malic acid

Non-vola�le
grape-derived
precursors

Grape sugars
(glucose and fructose)

Figure 2. The impact of yeast and bacteria during wine fermentation. Wine contains a la

juice and which are produced through the action of microorganisms. The primary role o

However, during this process many secondary metabolites are also produced that impa

Oenococcus oeni is to undertake malolactic fermentation in which wine is de-acidified 

growth of O. oeni also produces secondary metabolites that impact upon wine flavor.

molecules from non-volatile precursors present in the grape (usually as sugar-bound g
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of S. cerevisiae and O. oeni. These phenotypic differences
have direct implications not only for wine quality but also
for the efficiency of production of this industrialized prod-
uct. However, the underlying genetic basis for the vast
majority of these phenotypic differences remains unclear.

The genomic revolution that is being brought about
by advances in next-generation sequencing is providing
the means to answer these questions by making avail-
able the technology to map quickly and accurately the
genetic diversity present within grapevine, wine yeast,
and bacteria.

Owing to its position as one of the most intensively
studied biological model systems, in 1996 the laboratory
strain of S. cerevisiae (S288c) became the first eukaryote to
have its genome fully sequenced [7]. Genomic data are now
available for over 80 strains of S. cerevisiae, including six
commercial wine yeasts and at least another dozen strains
that were isolated either from wine, grapes, or vineyards
[8–21]. The remaining sequences represent a variety of
isolates from varied geographic and environmental
sources, and strains from other yeast-based industries
such as brewing, baking, and bioethanol production. This
provides a rich dataset for assembling the S. cerevisiae
phylogeny while also providing information linking genetic
variation with specific environmental or industrial niches.

The first wine yeast genome sequence became available
in 2008 [11]. Subsequent genomic analysis of S. cerevisiae
wine yeasts have shown that wine strains form a tight
geographic clade alongside environmental yeast isolates
[11,21,22]. This is surprising given that some isolates
originated outside of Europe (e.g., RM11-1a isolated from
an American vineyard and DBVPG1106 isolated from
Australian grapes). The close genotypic relationship is
presumably due to the exportation of European wine yeast
into wine-growing areas, either on grapevines or through
the use of commercial inoculated yeast species at nearby
wineries, although until large-scale haplotyping of
these diploid strains can be reliably performed, admixture
TRENDS in Genetics 

Ethanol and CO2

Secondary metabolites
• Esters
• Acids
• Higher alcohols

Aroma�c compounds
• Terpenols
• Thiols

Secondary metabolites
• Esters
• Diacetyl

Lac�c Acid

rge number of volatile flavor and aroma compounds that are not present in grape

f the yeast Saccharomyces cerevisiae is to convert grape sugars into ethanol (top).

rt distinct flavors and aromas to the final wine. The primary role of the bacterium

through the conversion of malic acid to lactic acid (bottom). As seen for yeast, the

 Both species also produce ‘flavor-releasing enzymes’ that release volatile aroma

lycosides). Adapted from [5].



(a)

(b)

Wine and
Vineyard

African
fermented
beverage

Sake
and RagiNorth

America

Malaysia

Reichensteiner Sch�nburger Muscat blanc Gamay

Chardonnay Gelber Ortlieber

Teinturier du Cher

Pinot noir Pe�te Bouschet

Alicante
Bousche

Aramon

Verdelho
Rotgipfler

Tinta Madeira

Grüner Veltliner

Sauvignon blanc

Chenin blanc

Meslier-Saint-François

Colombard
Carignan

Ruby
cabernet

Cabernet
Sauvignon

Merlot

Trincadeiro
Cabernet Franc

Trousseau
Semillon Fer Servadou

Royalty

Flora Bequignol

Taminga

Perle de csaba
Muscat of Alexandria

Muscat Hamburg

Kerner

Trollinger

Rotberger

Wi�berger

Op�ma

Ehrenfelser

Müller-Thurgau

Riesling

Osteiner Perle

Perlriesling Sylvaner Donzillinho

Pe�t manseng

Siegerrebe

Ortega

Pé agudo

Roter Veltliner

0.002

Y10

YJM269

DBVPG6044
NCYC110

PW5

K11

Y9

UC5

YPS128

YPS606

U
W

O
PS

05
_2

27
_2

U
W

O
PS

05
_2

17
_3

Kyokai no7

Bioethanol

Lab

Ale

CLIB382

CBS7960
T73

VIN
13

VL
3

Q
A

23

EC1118

RM
11

-1
DBVPG1106

DBVPG1373

AWRI1631

AWRI796JAY291

Sigma1278b

S288C

DBVPG1853

Foste
rss

B
Fo

ste
rss

O
YS

2
YJ

M
78

9

EC
9-

8

CLIB324

TRENDS in Genetics 

Traminer

Figure 3. Genetic relationships between cultivars and strains of grapevines and yeast uncovered by genomic sciences. (a) A maximum-likelihood phylogeny for

Saccharomyces cerevisiae based upon single-nucleotide polymorphism (SNP) variation present in whole-genome alignments. Color shading is used to highlight strains

associated with specific industries or geographic locations. (b) A modified pedigree of 54 cultivars of Vitis vinifera as determined by [78] using whole-genome Vitis SNP

genotyping arrays. Nodes are shaded according to the color of the grape berries produced by each cultivar (blanc, green; rosé , pink; noir, purple).
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between these commercial strains and native yeast strains
cannot be ruled out (Figure 3a). However, one of the most
important findings that has emerged from these whole-
genome comparisons is the differential presence of many
genomic regions in specific subsets of S. cerevisiae strains.
This is a situation that is common in many bacterial
species, including O. oeni (see below), in which the spe-
cies-wide, pan-genome is much larger than that found in
any single representative [23].

The genomes of the commonly used wine yeast EC1118
and its relatives QA23 and VL3 were shown to contain at
least one of two major telomeric insertions relative to the
laboratory strain – a 40 kb insertion in chromosome VI and
a 65 kb insertion in chromosome XV [11,18]. The insertion
on chromosome XV contains at least three genes with
potential to affect wine-relevant traits. One is a high-
affinity fructose/H+ symporter (a homolog of the Saccharo-
myces pastorianus gene FSY1) [24]; the other two comprise
a pair of tandemly duplicated oligopeptide transporters,
which potentially allow for a greater variety of small
peptides to be used as nitrogen sources [18,25]. Interest-
ingly a fourth open reading frame (ORF) from this genomic
insertion was shown to encode a putative xylitol dehydro-
genase that provides strains with the ability to utilize
xylose as a carbon source, a phenotype of particular inter-
est to the bioethanol industry [26].

The wine strain AWRI796 has a strain-specific �45 kb
insertion in the telomere of chromosome XV. This locus
encodes up to 18 proteins, including three putative aryl-
alcohol dehydrogenases, that are distinct from other mem-
bers of the S. cerevisiae aryl-alcohol dehydrogenase family
[11]. Given the expected role of these enzymes in convert-
ing ketones and aldehydes into corresponding aroma-ac-
tive alcohols, these genes are candidates for shaping wine
sensory attributes.

One of the most striking aspects of the wine yeast
genome is the presence of a cluster of five genes that are
postulated to have been horizontally transferred between
S. cerevisiae and Zygosaccharomyces spp. [18]. Although
present in many wine strains and at least one biofuel
strain, the location, copy-number, and exact order of the
genes within the cluster is both strain- and insertion site-
dependent. The genesis of these various genomic inser-
tions has been hypothesized to occur via the formation of
a circular intermediate through an undetermined pro-
cess that appears to be independent of classical recom-
binatorial or transposon-based duplication and insertion
[11]. Interestingly, since the time of this discovery in
yeast, similar multicopy insertions potentially involving
circular intermediates have been found in the Tilapia
(a freshwater fish) [27] and Bos taurus (bovine) [28]
genomes, raising the possibility that a novel but
widely conserved transposition mechanism may exist
in eukaryotes.

The first genome sequence of O. oeni, strain PSU-1,
was published in 2005 as part of a broad phylogenetic
sequencing project focused on lactic acid bacteria. There
are now an additional 13 strains of O. oeni for which
whole-genome information is available [29–32]. The ge-
nome of O. oeni is compact (1.8 Mb), and individual
strains encode between 1700 and 1900 proteins. However,
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as mentioned previously, like many bacterial species, this
protein complement can vary by around 10% between
strains. As a result, the pan-genome of O. oeni currently
stands at around 3000 proteins, of which 1165 comprise
the conserved core gene set found in all 14 strains [32].

The majority of differences in ORF content between
strains of O. oeni are due to the differential presence of
lysogenic bacteriophages [32]. However, the genome of the
only other member of the Oenococcus genus, Oenococcus
kitaharae, completely lacks lysogenic bacteriophage, pre-
sumably due to the presence of a functional CRISPR ele-
ment pathway that is absent from O. oeni [33].

Outside of integrated bacteriophage elements, the pan-
genome of O. oeni appears to provide strain-specific differ-
ences in cell-wall exopolysaccharide content, sugar utiliza-
tion, and transport across the plasma membrane
[31,32,34]. There are also accounts of intrastrain variation
in the presence of b-glycosidases [31,32]. These enzymes
are important in liberating volatile aroma molecules from
non-volatile sugar-bound precursors that are present in
grape juice. b-Glycosidase enzyme variation between
strains may be important in strain-specific flavor profiles
that can be produced through the use of different strains of
O. oeni for malolactic fermentation.

Given the much larger size of the V. vinifera genome
(450 Mb) compared to both S. cerevisiae (12 Mb) and O. oeni
(1.8 Mb), it is not surprising that genome sequencing data
for this species have lagged behind that of its microbial
counterparts. However, the sequencing of Pinot noir [35]
and the Pinot-derived haploid PN40024 [36] in 2007 has
revolutionized genetic studies of grapevine by providing
linked genetic and physical maps that will ultimately be
used to pinpoint genetic determinants of traits of viticul-
tural and enological importance [37,38]. Analysis of these
two genomes revealed the complex hexaploid genetic heri-
tage of grapevine by identifying triploid paralogous regions
within the genome, as well as the expansion of gene fami-
lies with roles in wine quality metrics, such as anthocyanin
(responsible for wine color) and monoterpene (an aroma
compound important to particular wine styles) production,
compared with other sequenced dicotyledonous species
[39,40].

Of immediate biotechnological interest was the identi-
fication of 341 plant disease-resistance genes (R-genes) in
the Pinot noir genome sequence. Several clusters of dis-
ease resistance genes were mapped to chromosomal
regions where resistances to fungal diseases were previ-
ously assigned [41]. These clusters of disease resistance
genes have been used to study grapevine genome evolu-
tion, an interesting example of the crossover between
biotechnological imperatives and evolutionary under-
standing [42]. The triplet groupings of V. vinifera chromo-
somes and the stable gene order within R-gene clusters
were used to identify putative component genomes of
grapevine while also probing the underlying pathways
of R-gene inheritance. This detailed knowledge of R-gene
cluster structure and the relationships between them,
delivered through whole-genome sequencing is laying
the foundation for, and expanding knowledge of grapevine
diversity, beyond that present in established germplasm
collections (Box 1).



Box 1. Genomic diversity, R genes, and pathogen resistance

Expanding the understanding of grapevine genetic diversity beyond

that which exists in established germplasm collections will con-

tribute to the continued development of breeding lines containing

stable and robust traits, especially for resistance to disease. Recent

work characterizing resistance to the fungus Plasmopara viticola

(downy mildew) is revealing in this context. Rpv3, the major

component of defense in native North American grapevines,

controls the ability to trigger a race-specific resistance response to

downy mildew infection [95], and has been the basis of many

breeding programs aimed at introducing downy mildew resistance

into Vitis vinifera [96].

Rpv3 resides on the lower arm of chromosome 18 [linkage group

(LG) 18] within 2 Mb, and tightly linked to, a second resistance locus,

Rpv2 [97]. Thirteen conserved haplotypes of Rpv3 have been

identified, with all haplotypes being present at a single locus

[96,97]. This region contains more than 100 NBS-LRR (nucleotide

binding site leucine-rich-repeat) R-genes, including some for

powdery mildew [73], and exhibits a low recombination frequency.

Tight linkage of the cluster has complicated positional cloning and

potentially restricts the combining of different resistance alleles

from within the linkage group.

Until recently, only one other downy resistance locus, Rpv1 on LG

12, was known outside LG 18 [98]. As a result there has been a push

to identify additional determinants of downy mildew resistance

residing outside the Rpv3 linkage group. Recent work with wild

Asian cultivars has identified additional resistance loci, Rpv10 on LG

9 [99] and Rpv8 on LG 14 [100]. That this degree of diversity exists

raises the prospect that stable and durable resistance to downy

mildew may in fact be achievable within a single breeding line. Such

findings are of particular importance in light of recent work

describing the breakdown of Rpv3-based resistance by P. viticola

in the field [101].
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Linking genetic diversity with phenotypic variation
In commercial-scale agriculture, such as the modern-day
wine sector, there is a need to relate genotypic variation
with important phenotypes to efficiently exploit genetic
resources in strain and clone development programs.
Genotype-phenotype associations are increasingly being
provided by integrated systems models, not only of indi-
vidual organisms, but increasingly by a molecular-genetic
grape-to-glass picture of winemaking.

Wine-omics and systems biology

Whole-genome methodologies such as transcriptomics,
proteomics, and metabolomics (collectively termed ‘omics
techniques) are being applied in winemaking to define
phenotypic variation at the molecular level and also to
assign genetic contributors to variation.

The application of individual ‘omic methodologies con-
tinues to provide insight into many areas of grapevine
biology including vine development [43–50], disease resis-
tance [51,52], and viticultural practices such as water and
light deficit [53–55]. The existence of such diverse datasets
has driven attempts at their integration [56]. Moreover,
the range of different ‘omics data types has led to the
exploration of novel analytical methods, or the application
of existing analytical methods in novel ways, in an attempt
to extract biologically relevant information.

Multivariate analytical methods are increasingly being
used to uncover relationships between complex ‘omics
datasets. An example of this approach is the identification
of developmental stage- and process-specific biomarkers
[57]. One study used a combination of principal component
analysis and bidirectional orthogonal projections to latent
structures (O2PLS-DS) on individual ‘omics datasets to
define developmental classes and class-specific variables.
These class definitions and variable attributes were then
used in subsequent rounds of two-way O2PLS comparisons
of transcriptomic, proteomic, and metabolomic data to
identify covariant structures between datasets. Systems-
level representations of berry development and withering
were built using these covariant structures, exposing the
role of sphingolipid fatty acids during berry growth and the
activation of specific stress-response genes during wither-
ing. For a summary of this and related multivariate
approaches to data integration see [58].

Following the identification of key contributors to
variation between treatments, as described above, some
methods of analysis still require target identification.
This is the case for some forms of metabolomic analysis.
The use of untargeted metabolomics for the profiling of
grapevine is increasingly being used as a discriminatory
or phenotyping tool [43,45]. However, resources such as
the tandem mass spectral database for phytochemicals
promise to advance metabolite profiling beyond basic
classification schemes to detailed phenotypic characteri-
zation, by providing the means to identify unknown
metabolites unambiguously from high-quality profiling
datasets [59].

Given its pioneering position in genomics, S. cerevisiae
has also been at the forefront of transcriptomic work, and
this remains the major ‘omics platform used for the study of
yeast biology [60,61]. Several transcriptomic studies that
have examined the impact of various wine-relevant envi-
ronmental perturbations on gene expression, including the
rehydration of dried active wine yeast [62,63] and the
fermentation process either in isolation [64] or co-inoculat-
ed with O. oeni [65]. However, data from a comparative
standpoint are limited to a group of studies that compared
the transcriptomic response of five different commercial
wine strains with phenotypic data and metabolomic anal-
ysis to ultimately link differences in aroma production to
variation within transcription factor networks [66,67]. In
addition, a recent study applied a systems-biology frame-
work of transcriptomics, proteomics, and flux analysis to
investigate the impact of NADP availability on ethanol
production in a genetically-modified low ethanol-producing
strain [68].

Gene mapping

The extensive development of genetic resources including
AFLP, SSR, and RAPD markers (see Glossary) for grape-
vine genetics in the era before the availability of the Pinot
noir genome sequence meant that the majority of traits of
viticultural and enological interest were first described as
quantitative trait loci (QTL). However, the genomic inter-
vals that could be defined for these traits, even when
combining multiple marker types, was often limited to
regions of hundreds of kb or more [69]. In addition, high
percentages of repetitive sequence elements, variable re-
combination frequencies, and large clusters of homologous
sequences made defining precise genetic determinants of
these traits difficult. As a result, genetic determinants are
known for a relatively small number of traits such as color
267
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and aroma [70,71], dwarfism [72], flower hermaphroditism
[73], and plant pathogen resistance [74,75].

Markers, predominantly SSRs, derived from classical
genetic maps used to map the genes discussed above are
still used to define the limits of genetic variation within
existing germplasm collections [76,77]. However, the avail-
ability of next-generation sequencing and whole-genome
sequence information is leading to the development of sin-
gle-nucleotide polymorphism (SNP)-based genotyping
arrays that are revealing the level of genetic diversity at
the disposal of breeders. Using SNP genotyping arrays, it
was shown that 75% of the US Department of Agriculture
grape germplasm collection was related to at least one other
cultivar by a first-degree relationship [78] (Figure 3b). Fur-
thermore, it was shown that the majority of the genetic
diversity present in domesticated grapevines is the result of
spontaneous somatic mutation as opposed to sexually de-
rived, segregating polymorphisms.

Although low-density SNP-based arrays allowed the
rapid assessment of genetic diversity, they have also
exposed the limitation of this technology in the assess-
ment of high-diversity species via genome-wide associa-
tion studies (GWAS). Owing to the rapid decay of linkage
disequilibrium in grapevine, these low-density genotyping
platforms, although providing orders of magnitude more
markers than traditional methods, still fall short of pro-
viding significant linkage to many phenotypic character-
istics [79]. However, the rapid development of next-
generation sequencing technology means that genotyp-
ing-by-sequencing is now a viable option for GWAS be-
cause it effectively provides an infinitely dense SNP map
tailored to the population under investigation, thereby
leading to ‘whole-genome-assisted’ rather than simply
marker-assisted breeding techniques [80,81].

In S. cerevisiae, the availability of molecular techniques
such as efficient transformation allow gene mapping by
molecular genetic means, including mutant isolation and
gene complementation, rather than via techniques such as
QTL analysis. However, because desirable industrial yeast
traits may be polygenic, methods such as QTL mapping
have received increasing attention in recent years. Despite
the later application of QTL mapping in yeast relative to
grapevine, the early development of genomic resources has
seen the rapid adoption of high-density SNP genotyping
microarrays [82] and, recently, genotyping-by-sequencing
[83] being used routinely for QTL analysis in this species,
further accelerating the potential for this classical tech-
nique to be used in a powerful whole-genome sequencing-
based workflow.

Given the benefits of using whole-genome data for QTL
mapping, several studies have applied this technique in
industrial strains of S. cerevisiae. These identified the loci
responsible for several brewing characteristics, including
key flavor metabolite production, in saké yeast [84], and
loci responsible for ethanol resistance [19] and xylose
utilization [26] for application in the bioethanol industry.
However, despite the promise of this technique, only two
studies have focused on wine-relevant traits, through
mapping the loci responsible for influencing acetic acid
production [85] and differences in fermentation perfor-
mance between wine and laboratory strains [86].
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The future of winemaking – is there a place for GM?
Moving forward, the winemaking industry faces challenges
both from environmental change and from consumer
demands. The application of genomics and genome-
assisted breeding will provide the means to address many
issues regarding the tailoring of wine flavor and the pro-
duction of industrial microorganisms with increased ro-
bustness and fermentation performance. However, there
are future challenges to the wine industry that may exceed
the capacity of even these technology-assisted classical
techniques to address efficiently. In these situations a
combination of GM with non-GM techniques will need to
be deployed within a systems-biology framework. In fact, it
may be in addressing such vital needs of the industry,
while providing a direct measurable benefit to the consum-
er, that GM strains may obtain the level of industry
backing that is required to address the concerns of the
general public.

The issue of climate change, combined with consumer
preferences for full-flavored ripe berry characteristics, has
meant that sugar levels in the mature grape berries, and
therefore alcohol concentrations in finished wines, have
been steadily increasing in recent years [87]. The push to
produce full-flavored wines that are lower in alcohol has
therefore received considerable attention, primarily from
yeast researchers who have looked to divert carbon flux
away from ethanol [87]. However, it may be that the search
for a low-ethanol wine yeast strain is one area that may not
be readily achievable by a non-GM strategy, even with the
application of systems biology. In this case, researchers are
effectively trying to unravel millions of years of evolution
that has made S. cerevisiae a highly efficient and reliable
producer of ethanol with very little variation in the amount
of ethanol that is produced by different S. cerevisiae strains
[88]. As such, although there has been one study in which a
non-GM, adaptive evolution, approach was used to reduce
ethanol with minor success [89], GM options in this area
have produced far more significant reductions [87].

Likewise, one of the challenges to viticulture is the
consumer and economic push to limit the use of pesticides
in the vineyard where, particularly in areas with relatively
cool, wet summers, such as large parts of Europe, large
fungicide inputs are required. In addition to representing a
significant economic burden to producers, especially in
situations where fungicide resistance is emerging [90],
these significant and repeated chemical additions pose
potential environmental and public health concerns. Al-
though the introgression of fungicide-resistance alleles
into susceptible grapevine clones is benefiting from ge-
nome-assisted breeding (Box 1), complications with classi-
cal grapevine breeding, such as inbreeding repression
during back-crossing and negative trait introduction
through linkage drag, contribute to difficulties in genetic
trait maintenance and recovery [91–93].

Transgenic approaches offer the possibility of circum-
venting these difficulties by avoiding traditional breeding
and backcrossing altogether, while also bridging mating
barriers to introduce novel resistance mechanisms to the
species. This is exemplified by the recent success in engi-
neering resistance to Xylella fastidiosa, a bacterial patho-
gen that causes Pierce disease in grapes. Through the
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introduction of a protein chimera of human neutrophil
elastase and cecropin B into Thompson seedless table
grapes, resistance to this bacterium was established. This
represents a phenotype that is lacking in natural cultivars
of V. vinifera, and which would therefore be impossible to
introduce by classical selection and breeding [94].

Concluding remarks
New genomic technologies are providing the methodologies
for the rapid identification of the genetic loci that shape
agronomically and industrially important traits. This in-
formation will provide precise markers for genome-
assisted breeding programs and enable the development
of new grapevine cultivars, wine yeasts, and malolactic
bacteria. These strategies, combined with the possibility of
applying GM techniques under the rigorously controlled
circumstances provided by a systems-biology framework,
will offer improved performance from the vine to the glass
and a means of tailoring wine sensory properties to meet
consumer demand.
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